Package: gfoRmula 1.1.0
Sean McGrath
gfoRmula: Parametric G-Formula
Implements the non-iterative conditional expectation (NICE) algorithm of the g-formula algorithm (Robins (1986) <doi:10.1016/0270-0255(86)90088-6>, Hernán and Robins (2024, ISBN:9781420076165)). The g-formula can estimate an outcome's counterfactual mean or risk under hypothetical treatment strategies (interventions) when there is sufficient information on time-varying treatments and confounders. This package can be used for discrete or continuous time-varying treatments and for failure time outcomes or continuous/binary end of follow-up outcomes. The package can handle a random measurement/visit process and a priori knowledge of the data structure, as well as censoring (e.g., by loss to follow-up) and two options for handling competing events for failure time outcomes. Interventions can be flexibly specified, both as interventions on a single treatment or as joint interventions on multiple treatments. See McGrath et al. (2020) <doi:10.1016/j.patter.2020.100008> for a guide on how to use the package.
Authors:
gfoRmula_1.1.0.tar.gz
gfoRmula_1.1.0.zip(r-4.5)gfoRmula_1.1.0.zip(r-4.4)gfoRmula_1.1.0.zip(r-4.3)
gfoRmula_1.1.0.tgz(r-4.4-any)gfoRmula_1.1.0.tgz(r-4.3-any)
gfoRmula_1.1.0.tar.gz(r-4.5-noble)gfoRmula_1.1.0.tar.gz(r-4.4-noble)
gfoRmula_1.1.0.tgz(r-4.4-emscripten)gfoRmula_1.1.0.tgz(r-4.3-emscripten)
gfoRmula.pdf |gfoRmula.html✨
gfoRmula/json (API)
NEWS
# Install 'gfoRmula' in R: |
install.packages('gfoRmula', repos = c('https://causalinference.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/causalinference/gformula/issues
- basicdata - Example Dataset for a Survival Outcome with Censoring
- basicdata_nocomp - Example Dataset for a Survival Outcome without Censoring
- binary_eofdata - Example Dataset for a Binary Outcome at End of Follow-Up
- censor_data - Example Dataset for a Survival Outcome with an Indicator of Censoring Variable
- continuous_eofdata - Example Dataset for a Continuous Outcome at End of Follow-Up
- continuous_eofdata_pb - Example Dataset for a Continuous Outcome at End of Follow-Up with Pre-Baseline Times
Last updated 2 months agofrom:ed5ca7b0d4. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 31 2024 |
R-4.5-win | OK | Oct 31 2024 |
R-4.5-linux | OK | Oct 31 2024 |
R-4.4-win | OK | Oct 31 2024 |
R-4.4-mac | OK | Oct 31 2024 |
R-4.3-win | OK | Oct 31 2024 |
R-4.3-mac | OK | Oct 31 2024 |
Exports:carry_forwardcumavggformulagformula_binary_eofgformula_continuous_eofgformula_survivallagavglaggedsimple_restrictionstaticthreshold
Dependencies:abindbackportsbootbroomcarcarDataclicolorspacecorrplotcowplotcpp11crayondata.tableDerivdigestdoBydplyrfansifarverFormulagenericsggplot2ggpubrggrepelggsciggsignifgluegridExtragtablehmsisobandlabelinglatticelifecyclelme4magrittrMASSMatrixMatrixModelsmaxLikmgcvmicrobenchmarkminqamiscToolsmodelrmunsellnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigpolynomprettyunitsprogresspurrrquantregR6RColorBrewerRcppRcppEigenrlangrstatixsandwichscalesSparseMstringistringrsurvivaltibbletidyrtidyselecttruncnormtruncregutf8vctrsviridisLitewithrzoo
A Simplified Approach for Specifying Interventions in gfoRmula
Rendered fromIntervention-Specification.Rmd
usingknitr::rmarkdown
on Oct 31 2024.Last update: 2024-07-20
Started: 2024-07-20
Using Custom Outcome Models in gfoRmula
Rendered fromCustom-Outcome-Models.Rmd
usingknitr::rmarkdown
on Oct 31 2024.Last update: 2024-09-13
Started: 2024-09-13